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The Filter Dichotomy

Definition (Filter Dichotomy, FD)

The Filter Dichotomy is the principle which says: for any free filter
F on ω there is a finite-to-one map φ : ω → ω such that either

1. φ (F) = Cof , where Cof denotes the cofinite filter, or

2. φ (F) = U where U is a free ultrafilter on ω.

This is secretly topology - if we stand on our heads (and use Stone
Duality) we see any discussion of free filters is really a discussion of
closed subsets of ω∗ = βω \ ω, the Stone-Čech remainder of ω.
Some lazy terminology: if there is a finite-to-one map sending a
filter F to a filter G, we will say more concisely that F is almost G.
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An easy observation...

If F is a free filter on ω and χ (F ) < u then F cannot be almost
an ultrafilter. Hence under FD F is almost Cof .

Consistency of FD is known, but in all models so far constructed,
u = ℵ1. It is easy to see however, in ZFC that if a free filter is
countably based, then it is almost Cof (take a pseudointersection
and then it is clear how to define the map).

Question
Is it consistent that both u > ℵ1 and the Filter Dichotomy holds?
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The Filter Dicotomy follows from the cardinal inequality u < g. It
is not equivalent, but it almost is, so for the purposes of this talk,
lets consider the more classical and equally interesting question:

Question
Is it consistent that u < g and u > ℵ1?
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A little reality check...

Is it even reasonable to expect all filters of character ℵ1 or larger to
be almost Cof ?

Theorem
Assume MA, or more generally p = c. Then if F is a free filter on
ω with character less than c then F is almost Cof .

This is all well and good, but

Theorem
Under p = c, the Filter Dichotomy fails.
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The Filter Dichotomy

Definition (Filter Dichotomy, FD)

The Filter Dichotomy is the principle which says: for any free filter
F on ω there is a finite-to-one map φ : ω → ω such that either

1. φ (F) = Cof , where Cof denotes the cofinite filter, or

2. φ (F) = U where U is a free ultrafilter on ω.

Consistency so far...

The Filter Dichotomy is consistent, but only so far with u = ℵ1.
MA implies the failure of the Filter Dichotomy.

Main Question
Is it consistent that u < g and u > ℵ1?



So what’s the problem?

Limited machinery

All the models so far are built using a countable support iteration
of proper forcings. No good if we want c > ℵ2.

Non-trivial and weird relationships

Weird relationships that complicate things...

Theorem (Shelah)

g ≤ b+.

Not only is this last result of Shelah seemingly mad, it has the
awkward consequence that if u < g then g = u+! This interacts
badly with iterated forcing machinery.
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The easiest things just won’t work

The following is not so difficult to show

Theorem
In any forcing extension by a finite support iteration of c.c.c.
forcings, g ≤ u.

...and we already know countable support iterations just won’t
work.
What about the (slightly weaker) Filter Dichotomy?

Well one
similarly shows that in a finite support iteration of c.c.c. forcings
either

I The Filter Dichotomy fails, or

I “Nothing is gained from iterating the forcings”. That is to say,
the Filter Dichotomy is reflected in many initial stages, and
we would have essentially had to cook up a one step forcing.

Annoying since iteration is such a natural way of thinking about
these problems.
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A vague plan

Because of Shelah’s result...

Theorem (Shelah)

g ≤ b+. In particular if u < g then g = u+.

...we would like to build a forcing extension in which u = κ, and
g = κ+. Iteration in the normal sense doesn’t seem quite good
enough, and we want to simultaneously lift u to κ and g to κ+.
How might we achieve these two tasks of “different complexity” at
the same time?

Idea
Build a forcing along a gap-1 morass at κ.
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So far

The arguments for normal (linear) iterations seem to break down.
Using forcings along a gap-1 morass at κ (in the sense of Irrgang)
one obtains a model in which

I u ≥ κ, but

I g ≤ κ+.

This class of forcings might just work then. Work is ongoing to try
and find an appropriate forcing...
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